If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+4x-98=0
a = 10; b = 4; c = -98;
Δ = b2-4ac
Δ = 42-4·10·(-98)
Δ = 3936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3936}=\sqrt{16*246}=\sqrt{16}*\sqrt{246}=4\sqrt{246}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{246}}{2*10}=\frac{-4-4\sqrt{246}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{246}}{2*10}=\frac{-4+4\sqrt{246}}{20} $
| 4(x+5)-13=35 | | 5y+40=8y-20 | | -4n-12=-4n+12 | | x/5-1/2=3/10 | | 8x-20=-5x+2 | | 0=10x^2+4x-98 | | 1*3x=2x.7 | | 6x-45/24=1/8 | | 2x-9x-(-3)=31 | | x^-3=26/64 | | 5/3x-4=2/x+3 | | 6x-6=6(x-6) | | 9×27+2×31-28=n | | z/8+7=-7 | | 6(x+2)-10=-28 | | 25=3x-20 | | 7/5+2/5x=37/15+7/3x+1/3 | | 125x2+25x-30=0 | | 3X+4x+5x=24 | | 5x*2=x*10 | | -3+15k-2=5+5+7k | | 3y-5+y+35=8y+30-6y | | 3/4w-1/2w=12 | | 1x-(-5)=-14 | | 3x+(-40)=2 | | 3p+4=7(p+8)+3(-4-8p) | | 148-4x=88 | | x2=529 | | 7y-17=-41+y | | x+3+4=3x+1 | | 4p^2+19p+12=0 | | -8=3x-20 |